2,798 research outputs found

    U-duality in three and four dimensions

    Full text link
    Using generalised geometry we study the action of U-duality acting in three and four dimensions on the bosonic fields of eleven dimensional supergravity. We compare the U-duality symmetry with the T-duality symmetry of double field theory and see how the SL(2)SL(3)SL(2)\otimes SL(3) and SL(5) U-duality groups reduce to the SO(2,2) and SO(3,3) T-duality symmetry groups of the type IIA theory. As examples we dualise M2-branes, both black and extreme. We find that uncharged black M2-branes become charged under U-duality, generalising the Harrison transformation, while extreme M2-branes will become new extreme M2-branes. The resulting tension and charges are quantised appropriately if we use the discrete U-duality group Ed(Z)E_d(Z).Comment: v1: 35 pages; v2: minor corrections in section 4.1.2, many references added; v3: further discussion added on the conformal factor of the generalised metric in section 2 and on the Wick-rotation used to construct examples in section

    Quantization on a torus without position operators

    Full text link
    We formulate quantum mechanics in the two-dimensional torus without using position operators. We define an algebra with only momentum operators and shift operators and construct irreducible representation of the algebra. We show that it realizes quantum mechanics of a charged particle in a uniform magnetic field. We prove that any irreducible representation of the algebra is unitary equivalent to each other. This work provides a firm foundation for the noncommutative torus theory.Comment: 12 pages, LaTeX2e, the title is changed, minor corrections are made, references are added. To be published in Modern Physics Letters

    Three results on representations of Mackey Lie algebras

    Full text link
    I. Penkov and V. Serganova have recently introduced, for any non-degenerate pairing WVCW\otimes V\to\mathbb C of vector spaces, the Lie algebra glM=glM(V,W)\mathfrak{gl}^M=\mathfrak{gl}^M(V,W) consisting of endomorphisms of VV whose duals preserve WVW\subseteq V^*. In their work, the category TglM\mathbb{T}_{\mathfrak{gl}^M} of glM\mathfrak{gl}^M-modules which are finite length subquotients of the tensor algebra T(WV)T(W\otimes V) is singled out and studied. In this note we solve three problems posed by these authors concerning the categories TglM\mathbb{T}_{\mathfrak{gl}^M}. Denoting by TVW\mathbb{T}_{V\otimes W} the category with the same objects as TglM\mathbb{T}_{\mathfrak{gl}^M} but regarded as VWV\otimes W-modules, we first show that when WW and VV are paired by dual bases, the functor TglMTVW\mathbb{T}_{\mathfrak{gl}^M}\to \mathbb{T}_{V\otimes W} taking a module to its largest weight submodule with respect to a sufficiently nice Cartan subalgebra of VWV\otimes W is a tensor equivalence. Secondly, we prove that when WW and VV are countable-dimensional, the objects of TEnd(V)\mathbb{T}_{\mathrm{End}(V)} have finite length as glM\mathfrak{gl}^M-modules. Finally, under the same hypotheses, we compute the socle filtration of a simple object in TEnd(V)\mathbb{T}_{\mathrm{End}(V)} as a glM\mathfrak{gl}^M-module.Comment: 9 page

    Reciprocal relativity of noninertial frames: quantum mechanics

    Full text link
    Noninertial transformations on time-position-momentum-energy space {t,q,p,e} with invariant Born-Green metric ds^2=-dt^2+dq^2/c^2+(1/b^2)(dp^2-de^2/c^2) and the symplectic metric -de/\dt+dp/\dq are studied. This U(1,3) group of transformations contains the Lorentz group as the inertial special case. In the limit of small forces and velocities, it reduces to the expected Hamilton transformations leaving invariant the symplectic metric and the nonrelativistic line element ds^2=dt^2. The U(1,3) transformations bound relative velocities by c and relative forces by b. Spacetime is no longer an invariant subspace but is relative to noninertial observer frames. Born was lead to the metric by a concept of reciprocity between position and momentum degrees of freedom and for this reason we call this reciprocal relativity. For large b, such effects will almost certainly only manifest in a quantum regime. Wigner showed that special relativistic quantum mechanics follows from the projective representations of the inhomogeneous Lorentz group. Projective representations of a Lie group are equivalent to the unitary reprentations of its central extension. The same method of projective representations of the inhomogeneous U(1,3) group is used to define the quantum theory in the noninertial case. The central extension of the inhomogeneous U(1,3) group is the cover of the quaplectic group Q(1,3)=U(1,3)*s H(4). H(4) is the Weyl-Heisenberg group. A set of second order wave equations results from the representations of the Casimir operators

    Exponential Renormalization II: Bogoliubov's R-operation and momentum subtraction schemes

    Full text link
    This article aims at advancing the recently introduced exponential method for renormalisation in perturbative quantum field theory. It is shown that this new procedure provides a meaningful recursive scheme in the context of the algebraic and group theoretical approach to renormalisation. In particular, we describe in detail a Hopf algebraic formulation of Bogoliubov's classical R-operation and counterterm recursion in the context of momentum subtraction schemes. This approach allows us to propose an algebraic classification of different subtraction schemes. Our results shed light on the peculiar algebraic role played by the degrees of Taylor jet expansions, especially the notion of minimal subtraction and oversubtractions.Comment: revised versio

    Weak commutation relations of unbounded operators: nonlinear extensions

    Full text link
    We continue our analysis of the consequences of the commutation relation [S,T]=\Id, where SS and TT are two closable unbounded operators. The {\em weak} sense of this commutator is given in terms of the inner product of the Hilbert space \H where the operators act. {We also consider what we call, adopting a physical terminology}, a {\em nonlinear} extension of the above commutation relations

    A generalized no-broadcasting theorem

    Get PDF
    We prove a generalized version of the no-broadcasting theorem, applicable to essentially \emph{any} nonclassical finite-dimensional probabilistic model satisfying a no-signaling criterion, including ones with ``super-quantum'' correlations. A strengthened version of the quantum no-broadcasting theorem follows, and its proof is significantly simpler than existing proofs of the no-broadcasting theorem.Comment: 4 page

    Is quantum mechanics exact?

    Full text link

    Fourier Duality as a Quantization Principle

    Full text link
    The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally compact groups. Kac algebras -- and the duality they incorporate -- are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest non-trivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no more complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems.Comment: LaTeX 2.09 with NFSS or AMSLaTeX 1.1. 97Kb, 43 pages, no figures. requires subeqnarray.sty, amssymb.sty, amsfonts.sty. Final version with (few) text and (crucial) typos correction

    Determination of the relative effects of temperature, pH and water activity in food systems: a meta-analysis study

    Get PDF
    The aim of this study is to use ComBase to determine the relative effects of temperature, pH, and water activity in the inactivation rates of Salmonella enterica in a range of foods. This is performed to determine whether any of the above factors have a dominant effect on survival. The inactivation rates of Salmonella were obtained from original raw data in the ComBase browser and from complete ComBase data for Salmonella. A total of 972 data of different types of food systems and data of individual types of food from ComBase were analysed. Over the range of 0–90°C, the z values calculated for the food data is 14°C. At 0–46°C relevant to intermediate moisture foods (IMF), the z values for the food data was 22°C, indicating a moderate effect of temperature. The z value for inactivation at 47–90°C was 11°C, indicating that temperature has an important effect on survival. This study shows that the effect of temperature is clearer at high temperatures than in the low temperature region. It suggests that the inactivation of Salmonella in food systems is slightly dominated by temperature and that the pH and aw levels appear to be less influential
    corecore